Aprenda a programar sistemas de negociação
Sistemas de Negociação: Construindo um Sistema.
Até agora, discutimos os componentes básicos dos sistemas de negociação, os critérios que eles devem atender e algumas das muitas decisões empíricas que um projetista deve fazer. Nesta seção, examinaremos o processo de construção de um sistema comercial, as considerações que precisam ser feitas e alguns pontos-chave a serem lembrados.
Dados - Como o projetista do sistema deve usar testes extensivos, o histórico de preços passados é essencial para a construção de um sistema de negociação. Esses dados podem ser integrados no software de desenvolvimento do sistema de negociação ou como um feed de dados separado. Os dados ao vivo geralmente são fornecidos por uma taxa mensal, enquanto os dados de idade podem ser obtidos gratuitamente.
Coloque automaticamente trades - Isso muitas vezes requer permissão do final do corretor porque uma conexão constante deve estar em vigor entre o software e a corretora. As negociações devem ser executadas imediatamente e a preços exatos para garantir a conformidade. Para que seu software faça negócios para você, tudo o que você precisa fazer é inserir o número da conta e a senha e tudo o resto é feito automaticamente. Por favor, note que usar esse recurso é estritamente opcional.
Depois que o teste de volta é executado, é gerado um relatório que descreve os detalhes dos resultados. Este relatório geralmente inclui lucro, número de negociações un / bem sucedidas, dias consecutivos baixos, número de negócios e muitas outras coisas que podem ser úteis ao tentar determinar como solucionar problemas ou melhorar o sistema. Finalmente, o software geralmente cria um gráfico que mostra o crescimento do investimento ao longo do período de tempo testado.
2. Design - O design é o conceito por trás do seu sistema, a maneira como os parâmetros são usados para gerar lucros ou prejuízos. Você implementa essas regras e parâmetros, programando-os. Às vezes, esta programação pode ser feita automaticamente através de uma interface de usuário gráfica. Isso permite que você crie regras sem aprender uma linguagem de programação. Aqui está um exemplo de um sistema de cross-over médio móvel:
Se SMA (20) CrossUnder EMA (13), então, saia;
O sistema é criado simplesmente digitando as regras na janela e salvando-as. As referências para as diferentes funções disponíveis (por exemplo, osciladores e tais) podem ser encontradas clicando no ícone do livro. A maioria dos softwares terá uma referência similar disponível no próprio programa ou em seu site. Depois de criar as regras desejadas e codificar o sistema, você simplesmente salva o arquivo. Então, você pode usá-lo selecionando-o na tela principal.
Em que mercado eu quero trocar? Que período de tempo devo usar? Qual a série de preços que devo usar? Qual subconjunto de ações devo usar para testar?
Tenha em mente que os sistemas de negociação devem ser consistentemente lucrativos em muitos mercados. Ao personalizar o período de tempo e as séries de preços demais, você pode manchar os resultados e produzir resultados não característicos.
Execute vários testes alternativos em diferentes períodos de tempo e certifique-se de que os resultados sejam consistentes e satisfatórios.
5. Repetir - Repetição é necessária. Continue trabalhando no sistema até que você possa obter um lucro consistente na maioria dos mercados e condições. Sempre há eventos imprevistos que ocorrem assim que um sistema é atualizado. Aqui estão alguns fatores que muitas vezes causam resultados negativos:
Custos de transação - Certifique-se de que você está usando a comissão real, e alguns extras para responder a preenchimentos imprecisos (diferença entre preços de lances e pedidos). Em outras palavras, evite o deslizamento! (Para rever o que é e como ocorre, veja a seção anterior deste tutorial.)
Estas seis etapas fornecem uma visão geral de todo o processo de construção de um sistema comercial. Na próxima seção, construiremos esse conhecimento e analisaremos mais detalhadamente a solução de problemas e a modificação.
Codificação de sistemas de negociação.
Por Justin Kuepper.
Como são criados sistemas de negociação automatizados?
Este tutorial se concentrará nas segunda e terceira partes deste processo, onde suas regras são convertidas em um código que seu software comercial pode entender e usar.
Vantagens e desvantagens.
Um sistema automatizado leva a emoção e ocupado - trabalhe fora da negociação, o que permite que você se concentre em melhorar sua estratégia e regras de gerenciamento de dinheiro. Uma vez que um sistema lucrativo é desenvolvido, não requer nenhum trabalho de sua parte até que ele quebre, ou as condições do mercado exigem uma mudança. Desvantagens:
Se o sistema não estiver corretamente codificado e testado, grandes perdas podem ocorrer muito rapidamente. Às vezes, é impossível colocar certas regras em código, o que dificulta o desenvolvimento de um sistema de negociação automatizado. Neste tutorial, você aprenderá como planejar e projetar um sistema de negociação automatizado, como traduzir esse design para o código que seu computador irá entender, como testar seu plano para garantir um desempenho ótimo e, finalmente, como colocar seu sistema em uso.
Aprenda a programar sistemas de negociação
Criando um Sistema de Negociação no Laboratório de Sistemas de Negociação.
O Trading System Lab gerará automaticamente Sistemas de Negociação em qualquer mercado em poucos minutos, usando um programa de computador muito conhecido, conhecido como AIMGP (Indução Automática de Código de Máquina com Programação Genética). A criação de um sistema de negociação no Trade System Lab é realizada em 3 etapas fáceis. Primeiro, é executado um pré-processador simples que extrai e pré-processa automaticamente os dados necessários do mercado com o qual você deseja trabalhar. A TSL aceita dados CSI, MetaStock, AIQ, TradeStation, dados de Internet gratuitos, ASCII, TXT, CSV, CompuTrac, DowJones, FutureSource, TeleChart2000v3, TechTools, XML, Binário e Internet. Em segundo lugar, o gerador do sistema de negociação (GP) é executado por vários minutos, ou mais, para evoluir um novo sistema de negociação. Você pode usar seus próprios dados, padrões, indicadores, relações de inter-mercado ou dados fundamentais dentro do TSL. Terceiro, o Sistema de Negociação evoluído é formatado para produzir novos sinais do Sistema de Negociação dentro da TradeStation ™ ou muitas outras plataformas de negociação. O TSL escreverá automaticamente Easy Language, Java, Assembler, código C, código C # e WealthLab Script Language. O Trading System pode então ser negociado manualmente, negociado através de um corretor ou negociado automaticamente. Você pode criar o Trading System você mesmo ou podemos fazer isso por você. Então, você ou o seu corretor podem trocar o sistema manualmente ou automaticamente.
O Programa de Genética do Sistema de Negociação do Comércio contém vários recursos que reduzem a possibilidade de montagem da curva ou produzem um Sistema de Negociação que não continua a atuar no futuro. Em primeiro lugar, os Sistemas de Negociação evoluídos têm seu tamanho reduzido ao tamanho mais baixo possível através do que é chamado de Pressão Parsimonia, extraindo do conceito de comprimento mínimo da descrição. Assim, o sistema de negociação resultante é o mais simples possível e, em geral, acredita-se que, quanto mais simples for o Sistema de Negociação, melhor será no futuro. Em segundo lugar, a aleatoriedade é introduzida no processo evolutivo, o que reduz a possibilidade de encontrar soluções que sejam localmente, mas não globalmente otimizadas. A aleatoriedade é introduzida sobre não apenas as combinações do material genético utilizado nos Sistemas de Negociação evoluídos, mas em Parsimony Pressure, Mutation, Crossover e outros parâmetros de GP de nível superior. O teste de fora da amostra é realizado enquanto o treinamento está em andamento com informações estatísticas apresentadas nos testes de Teste de Amostra e Fora do Teste de Amostra. Os registros de execução são apresentados ao usuário para dados de treinamento, validação e fora de amostra. Bem comportado O desempenho fora da amostra pode ser indicativo de que o Sistema de Negociação está evoluindo com características robustas. A deterioração substancial no teste automático de Out of Sample em comparação com o teste In Sample pode implicar que a criação de um Sistema de Negociação robusto está em dúvida ou que o Terminal ou Conjunto de Entrada pode precisar ser alterado. Finalmente, o Conjunto de terminais é cuidadosamente escolhido, de modo a não prejudicar demais a seleção do material genético inicial em relação a qualquer viés ou sentimento de mercado específico.
O TSL não começa a ser executado com um Sistema de Negociação predefinido. Na verdade, apenas o conjunto de entradas e uma seleção de modos ou modos de entrada no mercado, para busca e atribuição automática de entrada, são feitos inicialmente. Um padrão ou comportamento indicador que pode ser pensado como uma situação de alta pode ser usado, descartado ou invertido dentro do GP. Nenhum padrão ou indicador é pré-atribuído a qualquer viés de movimento de mercado específico. Esta é uma saída radical do desenvolvimento do sistema de negociação gerado manualmente.
Um Sistema de Negociação é um conjunto lógico de instruções que dizem ao comerciante quando comprar ou vender um mercado específico. Essas instruções raramente exigem intervenção de um comerciante. Os Sistemas de Negociação podem ser negociados manualmente, observando as instruções de negociação em uma tela do computador, ou podem ser negociados, permitindo que o computador entre em negociações no mercado automaticamente. Ambos os métodos estão em uso generalizado hoje. Existem mais gerentes de dinheiro profissionais que se consideram comerciantes "sistemáticos ou mecânicos" do que aqueles que se consideram "discretos", e o desempenho dos gerentes de dinheiro sistemáticos é geralmente superior ao dos gestores de dinheiro discrecional. Estudos mostraram que as contas de negociação geralmente perdem dinheiro com mais freqüência se o cliente não estiver usando um Sistema de Negociação. O aumento significativo nos sistemas de negociação nos últimos 10 anos é evidente, especialmente nas corretora de commodities, no entanto, as empresas de corretagem de mercado de ações e títulos estão cada vez mais conscientes dos benefícios através do uso de sistemas de negociação e alguns começaram a oferecer sistemas de negociação para seus clientes de varejo.
A maioria dos gestores de fundos mútuos já estão usando algoritmos computacionais sofisticados para orientar suas decisões quanto ao "estoque quente a escolher" ou o que "rotação do setor" é favorável. Computadores e algoritmos tornaram-se mainstream no investimento e esperamos que essa tendência continue a ser mais jovem, os investidores mais experientes em informática continuam a permitir que partes do seu dinheiro sejam gerenciadas pelos sistemas de negociação para reduzir o risco e aumentar os retornos. As enormes perdas experimentadas pelos investidores que participam da compra e detenção de ações e fundos de investimento como o mercado de ações derretido nos últimos anos está promovendo esse movimento para uma abordagem mais disciplinada e lógica para investir no mercado de ações. O investidor médio percebe que ele ou ela atualmente permite que muitos aspectos de suas vidas e a vida de seus entes queridos sejam mantidos ou controlados por computadores, como os automóveis e as aeronaves que usamos para o transporte, o equipamento de diagnóstico médico que usamos para a manutenção da saúde, os controladores de aquecimento e refrigeração que usamos para controle de temperatura, as redes que usamos para informações baseadas na internet, até mesmo os jogos que jogamos para entretenimento. Por que, então, alguns investidores de varejo acreditam que podem "disparar do quadril" em suas decisões sobre "o que" estoque ou fundo mútuo para comprar ou vender e esperar ganhar dinheiro? Finalmente, o investidor médio ficou cauteloso com os conselhos e informações encaminhados por corretores, contadores, diretores corporativos e consultores financeiros sem escrúpulos.
Nos últimos 20 anos, matemáticos e desenvolvedores de software pesquisaram indicadores e padrões em mercados de ações e commodities buscando informações que possam apontar para a direção do mercado. Essas informações podem ser usadas para melhorar o desempenho dos Sistemas de Negociação. Geralmente, este processo de descoberta é realizado através de uma combinação de testes e erros e mais sofisticados "Mineração de Dados". Normalmente, o desenvolvedor levará semanas ou meses de crunching de números para produzir um potencial Sistema de Negociação. Muitas vezes, este sistema de negociação não funcionará bem quando usado no futuro devido ao que é chamado de "ajuste de curva". Ao longo dos anos, tem havido muitos sistemas de negociação (e empresas de desenvolvimento de sistemas de negociação) que vieram e foram, já que seus sistemas falharam na negociação ao vivo. O desenvolvimento de sistemas de negociação que continuam a atuar no futuro é difícil, mas não é impossível de realizar, embora nenhum desenvolvedor ético ou gerente de dinheiro dê uma garantia incondicional de que qualquer Sistema de Negociação ou, por isso, qualquer ação, vínculo ou fundo mútuo, continuará para produzir lucros no futuro para sempre.
O que demorou semanas ou meses para que o desenvolvedor do Trading System produza no passado pode agora ser produzido em minutos através do uso do Trading System Lab. O Trading System Lab é uma plataforma para a geração automática de sistemas de negociação e indicadores de negociação. A TSL faz uso de um mecanismo de programação genética de alta velocidade e produzirá sistemas de negociação a uma taxa de mais de 16 milhões de barras de sistema por segundo com base em 56 entradas. Note-se que apenas alguns insumos serão realmente usados ou necessários, resultando em estruturas de estratégia geralmente simples evoluídas. Com aproximadamente 40.000 a 200.000 sistemas necessários para uma convergência, o tempo de convergência para qualquer conjunto de dados pode ser aproximado. Note-se que não estamos simplesmente executando uma otimização de força bruta de indicadores existentes que procuram parâmetros ótimos a partir dos quais usar em um Sistema de Negociação já estruturado. O Gerador do Sistema de Negociação começa em uma origem de ponto zero, não fazendo suposições sobre o movimento do mercado no futuro e então "evolui" Sistemas de Negociação a uma taxa muito alta combinando informações presentes no mercado e formulando novos filtros, funções, condições e relacionamentos à medida que progride para um sistema de negociação "geneticamente modificado". O resultado é que um excelente sistema de negociação pode ser gerado em poucos minutos em 20-30 anos de dados de mercado diários em praticamente qualquer mercado.
Ao longo dos últimos anos, houve várias abordagens para a otimização do Sistema de Negociação que empregam o Algoritmo Genético menos poderoso. Os Programas Genéticos (GP's) são superiores aos Algoritmos Genéticos (GA's) por vários motivos. Primeiro, os GPs convergem em uma solução a uma taxa exponencial (muito rápido e ficando mais rápido), enquanto os Algoritmos Genéticos convergem em uma taxa linear (muito mais lenta e não está ficando mais rápida). Em segundo lugar, os GPs realmente geram o código da máquina do Sistema de Negociação que combinava o material genético (indicadores, padrões, dados inter-mercado) de maneiras únicas. Essas combinações únicas podem não ser intuitivamente óbvias e não requerem definições iniciais pelo desenvolvedor do sistema. As relações matemáticas únicas criadas podem se tornar novos indicadores ou variantes na Análise Técnica, ainda não desenvolvidas ou descobertas. GA, por outro lado, simplesmente procure soluções ótimas à medida que progridem no intervalo de parâmetros; eles não descobrem novas relações matemáticas e não escrevem seu próprio código de Sistema de Negociação. O código do sistema comercial do GP de vários comprimentos, usando genomas de comprimento variável, modificará o comprimento do Sistema de Negociação através do chamado cruzamento não homólogo e descartará completamente um indicador ou padrão que não contribua para a eficiência do Sistema de Negociação. O uso de GA apenas blocos de instruções de tamanho fixo, fazendo uso de apenas cruzamentos homólogos e não produzem código de código de troca de comprimento variável, nem descartarão um indicador ou padrão ineficiente tão prontamente como um GP. Finalmente, os Programas Genéticos são um avanço recente no domínio da aprendizagem por máquinas, enquanto os Algoritmos Genéticos foram descobertos há 30 anos. Os Programas Genéticos incluem todas as principais funcionalidades dos Algoritmos Genéticos; crossover, reprodução, mutação e fitness, no entanto GPs incluem características muito mais rápidas e robustas, tornando a GP a melhor opção para produzir Trading Systems. O GP empregado no Trading System Generator da TSL é o GP mais rápido atualmente disponível e não está disponível em nenhum outro software de mercado financeiro no mundo.
O Algoritmo de Programação Genética, o Simulador de Negociação e os Motores Fitness utilizados na TSL levaram 8 anos para produzir.
O Trading System Lab é o resultado de anos de trabalho árduo de uma equipe de engenheiros, cientistas, programadores e comerciantes, e acreditamos que representa a tecnologia mais avançada disponível hoje para comercializar os mercados.
QuantStart.
Junte-se ao portal de membros privados da Quantcademy que atende à comunidade de comerciantes de varejo de varejo em rápido crescimento. Você encontrará um grupo bem informado de mentalistas quant pronto para responder suas perguntas comerciais mais importantes.
Confira meu ebook sobre o comércio de quant, onde eu ensino você como criar estratégias de negociação sistemáticas lucrativas com ferramentas Python, desde o início.
Dê uma olhada no meu novo ebook sobre estratégias de negociação avançadas usando análise de séries temporais, aprendizado de máquina e estatísticas bayesianas, com Python e R.
Por Michael Halls-Moore em 26 de julho de 2013.
Uma das perguntas mais freqüentes que recebo no QS mailbag é "Qual é a melhor linguagem de programação para negociação algorítmica?". A resposta curta é que não existe um "melhor" idioma. Parâmetros de estratégia, desempenho, modularidade, desenvolvimento, resiliência e custo devem ser considerados. Este artigo descreve os componentes necessários de uma arquitetura de sistema de negociação algorítmica e como as decisões relativas à implementação afetam a escolha do idioma.
Em primeiro lugar, serão considerados os principais componentes de um sistema de negociação algorítmico, como ferramentas de pesquisa, otimizador de portfólio, gerenciador de riscos e motor de execução. Posteriormente, serão examinadas diferentes estratégias de negociação e como elas afetam o design do sistema. Em particular, a freqüência de negociação e o provável volume de negociação serão discutidos.
Uma vez que a estratégia de negociação foi selecionada, é necessário arquitetar todo o sistema. Isso inclui a escolha de hardware, o (s) sistema (s) operacional (is) e a resiliência do sistema contra eventos raros e potencialmente catastróficos. Enquanto a arquitetura está sendo considerada, deve-se ter em conta o desempenho, tanto para as ferramentas de pesquisa quanto para o ambiente de execução ao vivo.
Qual é o sistema de comércio tentando fazer?
Antes de decidir sobre o "melhor" idioma com o qual escrever um sistema de negociação automatizado, é necessário definir os requisitos. O sistema será puramente baseado em execução? O sistema exigirá um módulo de gerenciamento de risco ou construção de portfólio? O sistema exigirá um backtester de alto desempenho? Para a maioria das estratégias, o sistema comercial pode ser dividido em duas categorias: Pesquisa e geração de sinal.
A pesquisa está preocupada com a avaliação de um desempenho de estratégia em relação aos dados históricos. O processo de avaliação de uma estratégia de negociação em relação aos dados anteriores do mercado é conhecido como backtesting. O tamanho dos dados e a complexidade algorítmica terão um grande impacto na intensidade computacional do backtester. A velocidade da CPU e a concorrência são muitas vezes os fatores limitantes na otimização da velocidade de execução da pesquisa.
A geração de sinal está preocupada com a geração de um conjunto de sinais de negociação a partir de um algoritmo e envio de ordens para o mercado, geralmente através de uma corretora. Para determinadas estratégias, é necessário um alto nível de desempenho. As questões de E / S, como a largura de banda da rede e a latência, muitas vezes são fatores limitantes na otimização de sistemas de execução. Assim, a escolha de idiomas para cada componente de todo o seu sistema pode ser bastante diferente.
Tipo, Frequência e Volume de Estratégia.
O tipo de estratégia algorítmica empregada terá um impacto substancial no design do sistema. Será necessário considerar os mercados comercializados, a conectividade com os fornecedores de dados externos, a freqüência e o volume da estratégia, o trade-off entre facilidade de desenvolvimento e otimização de desempenho, bem como qualquer hardware personalizado, incluindo customizado servidores, GPUs ou FPGAs que possam ser necessários.
As opções de tecnologia para uma estratégia de ações de baixa freqüência dos EUA serão muito diferentes das de uma negociação de estratégias de arbitragem estatística de alta freqüência no mercado de futuros. Antes da escolha do idioma, muitos fornecedores de dados devem ser avaliados que pertencem à estratégia em questão.
Será necessário considerar a conectividade com o fornecedor, a estrutura de todas as APIs, a pontualidade dos dados, os requisitos de armazenamento e a resiliência em face de um fornecedor que está offline. Também é aconselhável possuir acesso rápido a vários fornecedores! Vários instrumentos têm todos os seus peculiaridades de armazenamento, exemplos dos quais incluem símbolos de ticker múltiplos para ações e datas de vencimento para futuros (sem mencionar nenhum dado OTC específico). Isso precisa ser incorporado ao design da plataforma.
A frequência da estratégia provavelmente será um dos maiores drivers de como a pilha de tecnologia será definida. Estratégias que empregam dados com mais freqüência do que minuciosamente ou em segundo lugar, exigem uma consideração significativa em relação ao desempenho.
Uma estratégia que excede as barras segundo (isto é, dados de marca) leva a um design orientado a desempenho como o principal requisito. Para estratégias de alta freqüência, uma quantidade substancial de dados do mercado precisará ser armazenada e avaliada. Software como HDF5 ou kdb + é comumente usado para essas funções.
Para processar os extensos volumes de dados necessários para aplicações HFT, um sistema de backtester e execução extensivamente otimizado deve ser usado. C / C ++ (possivelmente com algum montador) é provável para o candidato a linguagem mais forte. As estratégias de ultra-alta freqüência certamente exigirão hardware personalizado, como FPGAs, co-localização de troca e ajuste de interface de rede / kernal.
Sistemas de pesquisa.
Os sistemas de pesquisa geralmente envolvem uma mistura de desenvolvimento interativo e script automatizado. O primeiro geralmente ocorre dentro de um IDE, como Visual Studio, MatLab ou R Studio. O último envolve cálculos numéricos extensos em vários parâmetros e pontos de dados. Isso leva a uma escolha de idioma que fornece um ambiente direto para testar código, mas também fornece desempenho suficiente para avaliar estratégias em várias dimensões de parâmetros.
Os IDE típicos neste espaço incluem Microsoft Visual C ++ / C #, que contém extensos utilitários de depuração, recursos de conclusão de código (via "Intellisense") e visões gerais diretas de toda a pilha do projeto (via o banco de dados ORM, LINQ); MatLab, que é projetado para uma grande variedade de álgebras lineares numéricas e operações vetoriais, mas de uma forma de console interativo; R Studio, que envolve o console de linguagem estatística R em um IDE de pleno direito; Eclipse IDE para Linux Java e C ++; e IDE semi-proprietários, como Enthought Canopy para Python, que incluem bibliotecas de análise de dados, como NumPy, SciPy, scikit-learn e pandas em um único ambiente interativo (console).
Para backtesting numérico, todos os idiomas acima são adequados, embora não seja necessário utilizar uma GUI / IDE, pois o código será executado "em segundo plano". A principal consideração nesta fase é a velocidade de execução. Um idioma compilado (como C ++) geralmente é útil se as dimensões do parâmetro backtest forem grandes. Lembre-se de que é necessário desconfiar de tais sistemas se for esse o caso!
Idiomas interpretados, como Python, muitas vezes fazem uso de bibliotecas de alto desempenho, como NumPy / pandas para a etapa de teste, para manter um grau razoável de competitividade com equivalentes compilados. Em última análise, o idioma escolhido para o backtesting será determinado por necessidades algorítmicas específicas, bem como o intervalo de bibliotecas disponíveis no idioma (mais sobre isso abaixo). No entanto, o idioma utilizado para o backtester e os ambientes de pesquisa podem ser completamente independentes dos usados na construção de portfólio, gerenciamento de riscos e componentes de execução, como será visto.
Construção de carteiras e gerenciamento de riscos.
A construção do portfólio e os componentes de gerenciamento de riscos são muitas vezes ignorados pelos comerciantes algorítmicos de varejo. Isso é quase sempre um erro. Essas ferramentas fornecem o mecanismo pelo qual o capital será preservado. Eles não só tentam aliviar o número de apostas "arriscadas", mas também minimizam o churn dos próprios negócios, reduzindo os custos de transação.
Versões sofisticadas desses componentes podem ter um efeito significativo na qualidade e consistência da lucratividade. É direto criar um estável de estratégias, pois o mecanismo de construção do portfólio e o gerenciador de riscos podem ser facilmente modificados para lidar com múltiplos sistemas. Assim, eles devem ser considerados componentes essenciais no início do projeto de um sistema de comércio algorítmico.
O trabalho do sistema de construção de carteiras é levar um conjunto de trades desejados e produzir o conjunto de negócios reais que minimizam o churn, manter exposições a vários fatores (como setores, classes de ativos, volatilidade, etc.) e otimizar a alocação de capital para vários estratégias em um portfólio.
A construção do portfólio geralmente se reduz a um problema de álgebra linear (como uma fatoração da matriz) e, portanto, o desempenho é altamente dependente da eficácia da implementação de álgebra linear numérica disponível. As bibliotecas comuns incluem uBLAS, LAPACK e NAG para C ++. O MatLab também possui operações de matriz amplamente otimizadas. Python utiliza NumPy / SciPy para tais cálculos. Um portfólio freqüentemente reequilibrado exigirá uma biblioteca de matriz compilada (e bem otimizada!) Para executar esta etapa, de modo a não engarrafar o sistema de comércio.
O gerenciamento de riscos é outra parte extremamente importante de um sistema de comércio algorítmico. O risco pode vir de várias formas: aumento da volatilidade (embora isso possa ser visto como desejável para certas estratégias!), Aumento de correlações entre classes de ativos, contraparte padrão, interrupções do servidor, eventos de "cisnes negros" e erros não detectados no código comercial, para nomear alguns.
Os componentes de gerenciamento de risco tentam antecipar os efeitos da volatilidade excessiva e a correlação entre as classes de ativos e seus efeitos (s) subsequentes sobre o capital de negociação. Muitas vezes isso se reduz a um conjunto de cálculos estatísticos, como Monte Carlo "testes de estresse". Isso é muito semelhante às necessidades computacionais de um mecanismo de preços de derivativos e, como tal, será vinculado à CPU. Essas simulações são altamente paralelizáveis (veja abaixo) e, até certo ponto, é possível "lançar hardware no problema".
Sistemas de Execução.
O trabalho do sistema de execução é receber sinais de negociação filtrados dos componentes de construção de portfólio e gerenciamento de riscos e enviá-los para uma corretora ou outros meios de acesso ao mercado. Para a maioria das estratégias de negociação algorítmica de varejo, isso envolve uma conexão API ou FIX para uma corretora, como Interactive Brokers. As considerações primárias ao decidir sobre um idioma incluem a qualidade da API, a disponibilidade do idioma para uma API, a freqüência de execução e o deslizamento antecipado.
A "qualidade" da API refere-se ao quão bem documentado é, qual o tipo de desempenho que ele fornece, se ele precisa de um software autônomo para ser acessado ou se um gateway pode ser estabelecido de forma sem cabeça (ou seja, sem GUI). No caso dos Interactive Brokers, a ferramenta Trader WorkStation precisa ser executada em um ambiente GUI para acessar sua API. Uma vez, tive que instalar uma edição do Desktop Ubuntu em um servidor de nuvem da Amazon para acessar os corretores interativos de forma remota, apenas por esse motivo!
A maioria das APIs fornecerá uma interface C ++ e / ou Java. Geralmente, é de responsabilidade da comunidade desenvolver wrappers específicos do idioma para C #, Python, R, Excel e MatLab. Note-se que, com cada plugin adicional utilizado (especialmente os wrappers da API), há possibilidades de insetos no sistema. Sempre teste plugins desse tipo e assegure-se de que sejam ativamente mantidos. Um indicador valioso é ver quantas novas atualizações de uma base de código foram feitas nos últimos meses.
A frequência de execução é de extrema importância no algoritmo de execução. Note que centenas de pedidos podem ser enviados a cada minuto e, como tal, o desempenho é crítico. Slippage será incorrido através de um sistema de execução mal executado e isso terá um impacto dramático sobre a rentabilidade.
Os idiomas estaticamente digitados (veja abaixo), como C ++ / Java, geralmente são ótimos para execução, mas há um trade-off em tempo de desenvolvimento, testes e facilidade de manutenção. Idiomas dinamicamente digitados, como Python e Perl, geralmente são geralmente "rápidos o suficiente". Certifique-se sempre de que os componentes foram projetados de forma modular (veja abaixo) para que eles possam ser "trocados" à medida que o sistema se reduz.
Processo de Planejamento e Desenvolvimento Arquitetônico.
Os componentes de um sistema de comércio, seus requisitos de freqüência e volume foram discutidos acima, mas a infraestrutura do sistema ainda não foi coberta. Aqueles que atuam como comerciante de varejo ou que trabalham em um fundo pequeno provavelmente estarão "vestindo muitos chapéus". Será necessário cobrir o modelo alfa, o gerenciamento de riscos e os parâmetros de execução, bem como a implementação final do sistema. Antes de aprofundar linguagens específicas, o design de uma arquitetura de sistema ideal será discutido.
Separação de preocupações.
Uma das decisões mais importantes que devem ser tomadas no início é como "separar as preocupações" de um sistema comercial. No desenvolvimento de software, isso significa essencialmente como dividir os diferentes aspectos do sistema de negociação em componentes modulares separados.
Ao expor as interfaces em cada um dos componentes, é fácil trocar partes do sistema por outras versões que ajudem o desempenho, confiabilidade ou manutenção, sem modificar nenhum código de dependência externo. Esta é a "melhor prática" para esses sistemas. Para estratégias em frequências mais baixas, tais práticas são aconselhadas. Para a negociação de alta freqüência, o livro de regras pode ser ignorado à custa de ajustar o sistema para ainda mais desempenho. Um sistema mais acoplado pode ser desejável.
Criar um mapa de componentes de um sistema de negociação algorítmico vale um artigo em si. No entanto, uma abordagem ótima é garantir que haja componentes separados para as entradas de dados de mercado históricos e em tempo real, armazenamento de dados, API de acesso a dados, backtester, parâmetros de estratégia, construção de portfólio, gerenciamento de riscos e sistemas de execução automatizada.
Por exemplo, se o armazenamento de dados em uso estiver atualmente com desempenho inferior, mesmo em níveis significativos de otimização, ele pode ser trocado com reescrituras mínimas para a ingesta de dados ou API de acesso a dados. Até o ponto em que o backtester e os componentes subsequentes estão em causa, não há diferença.
Outro benefício de componentes separados é que permite que uma variedade de linguagens de programação sejam usadas no sistema geral. Não é necessário restringir a um único idioma se o método de comunicação dos componentes for independente de linguagem. Este será o caso se estiverem se comunicando via TCP / IP, ZeroMQ ou algum outro protocolo independente de linguagem.
Como um exemplo concreto, considere o caso de um sistema de backtesting que está sendo escrito em C ++ para o desempenho do "crunching", enquanto o gerenciador de portfólio e os sistemas de execução são escritos em Python usando SciPy e IBPy.
Considerações sobre o desempenho.
O desempenho é uma consideração significativa para a maioria das estratégias comerciais. Para estratégias de maior freqüência, é o fator mais importante. O "Desempenho" cobre uma ampla gama de problemas, como velocidade de execução algorítmica, latência de rede, largura de banda, E / S de dados, simultaneidade / paralelismo e dimensionamento. Cada uma dessas áreas é coberta individualmente por grandes livros didáticos, portanto este artigo apenas arranhará a superfície de cada tópico. A escolha da arquitetura e da linguagem agora será discutida em termos de seus efeitos sobre o desempenho.
A sabedoria prevalecente, como afirmou Donald Knuth, um dos pais da Ciência da Computação, é que "a otimização prematura é a raiz de todo o mal". Este é quase sempre o caso - exceto quando se forma um algoritmo de negociação de alta freqüência! Para aqueles que estão interessados em estratégias de baixa freqüência, uma abordagem comum é construir um sistema da maneira mais simples possível e apenas otimizar à medida que os estrangulamentos começam a aparecer.
Ferramentas de perfil são usadas para determinar onde surgem os estrangulamentos. Perfis podem ser feitos para todos os fatores listados acima, em um ambiente MS Windows ou Linux. Existem muitas ferramentas de sistema operacional e de idioma disponíveis para isso, bem como utilitários de terceiros. A escolha da linguagem agora será discutida no contexto da performance.
C ++, Java, Python, R e MatLab contêm bibliotecas de alto desempenho (como parte do padrão ou externo) para estrutura básica de dados e trabalho algorítmico. C ++ é fornecido com a Biblioteca de modelos padrão, enquanto o Python contém NumPy / SciPy. Tarefas matemáticas comuns são encontradas nessas bibliotecas e raramente é benéfico escrever uma nova implementação.
Uma exceção é se uma arquitetura de hardware altamente personalizada é necessária e um algoritmo está fazendo uso extensivo de extensões proprietárias (como caches personalizados). No entanto, muitas vezes a "reinvenção da roda" desperdiça o tempo que pode ser melhor gasto no desenvolvimento e otimização de outras partes da infra-estrutura de negociação. O tempo de desenvolvimento é extremamente precioso especialmente no contexto dos únicos desenvolvedores.
A latência é muitas vezes uma questão do sistema de execução, pois as ferramentas de pesquisa geralmente estão localizadas na mesma máquina. Para o primeiro, a latência pode ocorrer em vários pontos ao longo do caminho de execução. Os bancos de dados devem ser consultados (latência de disco / rede), os sinais devem ser gerados (sistema operacional, latência de mensagens do kernal), sinais comerciais enviados (latência NIC) e pedidos processados (latência interna dos sistemas de troca).
Para operações de maior freqüência, é necessário familiarizar-se intimamente com a otimização do kernal, além de otimizar a transmissão da rede. Esta é uma área profunda e está significativamente além do escopo do artigo, mas se um algoritmo UHFT é desejado então esteja ciente da profundidade do conhecimento necessário!
O cache é muito útil no conjunto de ferramentas de um desenvolvedor de negócios quantitativo. O armazenamento em cache refere-se ao conceito de armazenar dados freqüentemente acessados de uma maneira que permita um acesso de alto desempenho, em detrimento do potencial estancamento dos dados. Um caso de uso comum ocorre no desenvolvimento da web ao tirar dados de um banco de dados relacional com respaldo de disco e colocá-lo na memória. Quaisquer pedidos subseqüentes para os dados não precisam "acessar o banco de dados" e, portanto, os ganhos de desempenho podem ser significativos.
Para situações de negociação, o cache pode ser extremamente benéfico. Por exemplo, o estado atual de um portfólio de estratégia pode ser armazenado em um cache até ser reequilibrado, de modo que a lista não precisa ser regenerada em cada ciclo do algoritmo de negociação. Essa regeneração provavelmente será uma alta CPU ou operação de E / S de disco.
No entanto, o armazenamento em cache não está sem os seus próprios problemas. A regeneração de dados de cache de uma só vez, devido à natureza volátil do armazenamento de cache, pode colocar uma demanda significativa na infraestrutura. Outra questão é o empilhamento de cães, onde múltiplas gerações de uma nova cópia de cache são realizadas sob uma carga extremamente alta, o que leva a uma falha em cascata.
A alocação de memória dinâmica é uma operação cara na execução de software. Assim, é imperativo que os aplicativos de maior desempenho comercial sejam conscientes de como a memória está sendo alocada e desalocada durante o fluxo do programa. Novos padrões de linguagem, como Java, C # e Python, todos executam a coleta automática de lixo, que se refere à desalocação da memória alocada dinamicamente quando os objetos ficam fora do escopo.
A coleta de lixo é extremamente útil durante o desenvolvimento, pois reduz erros e ajuda a legibilidade. No entanto, muitas vezes é sub óptimo para certas estratégias de negociação de alta freqüência. A coleta de lixo personalizada é muitas vezes desejada para esses casos. Em Java, por exemplo, ao ajustar a configuração do coletor de lixo e do heap, é possível obter alto desempenho para as estratégias de HFT.
C ++ não fornece um coletor de lixo nativo e, portanto, é necessário lidar com toda a alocação / desalocação de memória como parte da implementação de um objeto. Embora potencialmente propenso a erros (potencialmente levando a ponteiros pendurados), é extremamente útil ter um controle fino de como os objetos aparecem no heap para determinadas aplicações. Ao escolher um idioma, certifique-se de estudar como funciona o coletor de lixo e se ele pode ser modificado para otimizar um caso de uso específico.
Muitas operações em sistemas de negociação algorítmica são favoráveis à paralelização. Isso se refere ao conceito de realização de múltiplas operações programáticas ao mesmo tempo, ou seja, em "paralelo". Os algoritmos denominados "embarassingly paralelos" incluem etapas que podem ser computadas totalmente independentemente de outras etapas. Certas operações estatísticas, como as simulações de Monte Carlo, são um bom exemplo de algoritmos embarazosa paralelos, pois cada sorteio aleatório e subsequente operação do caminho podem ser computados sem o conhecimento de outros caminhos.
Outros algoritmos são apenas parcialmente paralelizados. As simulações de dinâmica de fluidos são um exemplo, onde o domínio da computação pode ser subdividido, mas, em última instância, esses domínios devem se comunicar entre si e, portanto, as operações são parcialmente seqüenciais. Os algoritmos paralisáveis estão sujeitos à Lei de Amdahl, que fornece um limite superior teórico para o aumento de desempenho de um algoritmo paralelizado quando sujeito a processos separados em $ N $ (por exemplo, em um núcleo ou fio de CPU).
A paralelização tornou-se cada vez mais importante como um meio de otimização, uma vez que as velocidades do clock do processador estagnaram, já que os processadores mais novos contêm muitos núcleos com os quais realizar cálculos paralelos. O aumento do hardware de gráficos de consumo (predominantemente para videogames) levou ao desenvolvimento de Unidades de processamento gráfico (GPUs), que contém centenas de "núcleos" para operações altamente concorrentes. Tais GPUs são agora muito acessíveis. Os quadros de alto nível, como o CUDA da Nvidia, levaram a uma adoção generalizada na academia e nas finanças.
Esse hardware de GPU geralmente é apenas adequado para o aspecto de pesquisa de financiamento quantitativo, enquanto que outros equipamentos mais especializados (incluindo matrizes de portas programáveis em campo - FPGAs) são usados para (U) HFT. Atualmente, a maioria dos langauges modernos suporta um grau de concorrência / multithreading. Assim, é direto otimizar um backtester, pois todos os cálculos são geralmente independentes dos outros.
O dimensionamento em engenharia e operações de software refere-se à capacidade do sistema de lidar consistentemente com o aumento de cargas sob a forma de solicitações maiores, maior uso do processador e maior alocação de memória. Na negociação algorítmica, uma estratégia pode escalar se pode aceitar quantidades maiores de capital e ainda produzir retornos consistentes. A pilha de tecnologia de negociação escala se pode suportar maiores volumes de comércio e latência aumentada, sem bloqueio de estrangulamento.
Enquanto os sistemas devem ser projetados para dimensionar, muitas vezes é difícil prever de antemão, onde um gargalo irá ocorrer. O registro, o teste, o perfil e o monitoramento rigorosos ajudarão grandemente em permitir que um sistema seja dimensionado. As próprias línguas são muitas vezes descritas como "inesquecíveis". Isso geralmente é o resultado de uma informação errônea, e não de um fato difícil. É a pilha de tecnologia total que deve ser verificada quanto à escalabilidade, e não ao idioma. Claramente, certas línguas têm maior desempenho do que outras em casos de uso específicos, mas um idioma nunca é "melhor" do que outro em todos os sentidos.
Um meio de gerenciar a escala é separar as preocupações, como afirmado acima. A fim de introduzir ainda a capacidade de lidar com "picos" no sistema (ou seja, uma volatilidade súbita que desencadeia uma série de trades), é útil criar uma "arquitetura de filas de mensagens". Isso simplesmente significa colocar um sistema de fila de mensagens entre os componentes para que as ordens sejam "empilhadas" se um determinado componente não conseguir processar muitos pedidos.
Em vez de pedidos de perda, eles simplesmente são mantidos em uma pilha até que a mensagem seja tratada. Isso é particularmente útil para enviar trocas para um mecanismo de execução. Se o motor está sofrendo em latência intensa, ele irá fazer backup de trades. Uma fila entre o gerador de sinal comercial e a API de execução aliviará essa questão à custa de uma possível destruição comercial. Um bem respeitado corretor de fila de mensagens de código aberto é RabbitMQ.
Hardware e sistemas operacionais.
O hardware que executa sua estratégia pode ter um impacto significativo na rentabilidade do seu algoritmo. Esta não é uma questão restrita aos comerciantes de alta freqüência. Uma má escolha em hardware e sistema operacional pode levar a uma falha na máquina ou reiniciar no momento mais inoportuno. Assim, é necessário considerar onde sua candidatura irá residir. A escolha é geralmente entre uma máquina de mesa pessoal, um servidor remoto, um provedor de "nuvem" ou um servidor co-localizado em troca.
As máquinas de mesa são simples de instalar e administrar, especialmente com sistemas operacionais mais novos e amigáveis, como o Windows 7/8, o Mac OSX eo Ubuntu. Os sistemas de desktop possuem algumas desvantagens significativas, no entanto. O principal é que as versões dos sistemas operacionais projetados para máquinas de mesa provavelmente irão requerer reinicialização / remendo (e muitas vezes no pior dos tempos!). Eles também usam mais recursos computacionais pela virtude de exigir uma interface gráfica do usuário (GUI).
Utilizar hardware em um ambiente doméstico (ou escritório local) pode levar à conectividade com a internet e aos problemas de tempo de atividade. O principal benefício de um sistema de desktop é que a potência computacional significativa pode ser comprada pela fração do custo de um servidor dedicado remoto (ou sistema baseado em nuvem) de velocidade comparável.
Um servidor dedicado ou uma máquina baseada em nuvem, muitas vezes mais caro do que uma opção de desktop, permite uma infra-estrutura de redundância mais significativa, como backups automatizados de dados, a capacidade de garantir de forma mais direta o tempo de atividade e monitoramento remoto. Eles são mais difíceis de administrar, pois exigem a capacidade de usar recursos de logon remoto do sistema operacional.
No Windows, isto é geralmente através do GUI Remote Desktop Protocol (RDP). Em sistemas baseados em Unix, a linha de comando Secure SHell (SSH) é usada. A infraestrutura de servidor baseada em Unix é quase sempre baseada em linha de comando, o que imediatamente faz com que as ferramentas de programação baseadas em GUI (como MatLab ou Excel) sejam inutilizáveis.
Um servidor co-localizado, como a frase é usada nos mercados de capitais, é simplesmente um servidor dedicado que se encontra dentro de uma troca para reduzir a latência do algoritmo de negociação. Isso é absolutamente necessário para certas estratégias de negociação de alta freqüência, que dependem de baixa latência para gerar alfa.
O aspecto final para a escolha do hardware e a escolha da linguagem de programação é a independência da plataforma. Existe a necessidade do código para executar vários sistemas operacionais diferentes? O código foi projetado para ser executado em um tipo específico de arquitetura de processador, como o Intel x86 / x64 ou será possível executar em processadores RISC, como os fabricados pela ARM? Essas questões serão altamente dependentes da frequência e do tipo de estratégia implementada.
Resiliência e Testes.
Uma das melhores maneiras de perder muito dinheiro na negociação algorítmica é criar um sistema sem resiliência. Isso se refere à durabilidade do sistema quando sujeito a eventos raros, como falências de corretagem, volatilidade súbita em excesso, tempo de inatividade em toda a região para um provedor de servidor em nuvem ou a exclusão acidental de um banco de dados de negociação inteiro. Anos de lucro podem ser eliminados em segundos com uma arquitetura mal projetada. É absolutamente essencial considerar questões como debugging, testes, logging, backups, alta disponibilidade e monitoramento como componentes principais do seu sistema.
É provável que, em qualquer aplicativo de negociação quantitativo personalizado razoavelmente complicado, pelo menos 50% do tempo de desenvolvimento serão gastos em depuração, teste e manutenção.
Quase todas as linguagens de programação são enviadas com um depurador associado ou possuem alternativas de terceiros bem respeitadas. Em essência, um depurador permite a execução de um programa com inserção de pontos de interrupção arbitrários no caminho do código, que interrompe temporariamente a execução para investigar o estado do sistema. O principal benefício da depuração é que é possível investigar o comportamento do código antes de um ponto de falha conhecido.
A depuração é um componente essencial na caixa de ferramentas para analisar erros de programação. No entanto, eles são mais amplamente utilizados em linguagens compiladas, como C ++ ou Java, pois linguagens interpretadas, como Python, geralmente são mais fáceis de depurar devido a menos declarações LOC e menos verbosas. Apesar desta tendência, o Python é enviado com o pdb, que é uma ferramenta de depuração sofisticada. O Microsoft Visual C ++ IDE possui amplos utilitários de depuração de GUI, enquanto que para o programador de linha de comando Linux C ++, o depurador gdb existe.
O teste no desenvolvimento de software refere-se ao processo de aplicação de parâmetros e resultados conhecidos a funções, métodos e objetos específicos dentro de uma base de código, para simular o comportamento e avaliar múltiplos caminhos de código, ajudando a garantir que um sistema se comporta como deveria. Um paradigma mais recente é conhecido como Test Driven Development (TDD), onde o código de teste é desenvolvido contra uma interface especificada sem implementação. Antes da conclusão da base de código real, todos os testes falharão. À medida que o código é escrito para "preencher os espaços em branco", os testes eventualmente passarão, em que ponto o desenvolvimento deve cessar.
O TDD requer um design de especificação detalhado e abrangente, bem como um grau de disciplina saudável para realizar com sucesso. Em C ++, o Boost fornece uma estrutura de teste de unidade. Em Java, a biblioteca JUnit existe para cumprir a mesma finalidade. O Python também possui o módulo unittest como parte da biblioteca padrão. Muitas outras línguas possuem estruturas de teste de unidade e muitas vezes existem várias opções.
Em um ambiente de produção, o log sofisticado é absolutamente essencial. Logging refere-se ao processo de saída de mensagens, com vários graus de gravidade, em relação ao comportamento de execução de um sistema em um arquivo ou banco de dados plano. Os logs são uma "primeira linha de ataque" ao procurar o comportamento inesperado do tempo de execução do programa. Infelizmente, as falhas de um sistema de registro tendem a ser descobertas apenas após o fato! Tal como acontece com os backups discutidos abaixo, um sistema de registro deve ser devidamente considerado ANTES de projetar um sistema.
Tanto o Microsoft Windows quanto o Linux possuem uma extensa capacidade de registro do sistema e as linguagens de programação tendem a ser enviadas com bibliotecas de registro padrão que cobrem a maioria dos casos de uso. Muitas vezes, é aconselhável centralizar as informações de registro para analisá-lo em uma data posterior, uma vez que muitas vezes pode levar a idéias sobre como melhorar o desempenho ou a redução de erros, o que quase certamente terá um impacto positivo em seus retornos comerciais.
Embora o registro de um sistema forneça informações sobre o que aconteceu no passado, o monitoramento de um aplicativo fornecerá uma visão do que está acontecendo agora. Todos os aspectos do sistema devem ser considerados para o monitoramento. As métricas do nível do sistema, como o uso do disco, a memória disponível, a largura de banda da rede e o uso da CPU fornecem informações básicas de carga.
Métricas de negociação, como preços / volume anormais, levantamentos rápidos bruscos e exposição à conta para diferentes setores / mercados também devem ser monitorados continuamente. Além disso, deve ser instigado um sistema de limiar que forneça notificação quando certas métricas são violadas, elevando o método de notificação (e-mail, SMS, atendimento automatizado), dependendo da gravidade da métrica.
O monitoramento do sistema geralmente é o domínio do administrador do sistema ou do gerente de operações. No entanto, como um único desenvolvedor comercial, essas métricas devem ser estabelecidas como parte do design maior. Existem muitas soluções para monitoramento: proprietárias, hospedadas e de código aberto, que permitem uma ampla personalização de métricas para um caso de uso particular.
Os backups e a alta disponibilidade devem ser as principais preocupações de um sistema comercial. Consider the following two questions: 1) If an entire production database of market data and trading history was deleted (without backups) how would the research and execution algorithm be affected? 2) If the trading system suffers an outage for an extended period (with open positions) how would account equity and ongoing profitability be affected? The answers to both of these questions are often sobering!
It is imperative to put in place a system for backing up data and also for testing the restoration of such data. Many individuals do not test a restore strategy. If recovery from a crash has not been tested in a safe environment, what guarantees exist that restoration will be available at the worst possible moment?
Similarly, high availability needs to be "baked in from the start". Redundant infrastructure (even at additional expense) must always be considered, as the cost of downtime is likely to far outweigh the ongoing maintenance cost of such systems. I won't delve too deeply into this topic as it is a large area, but make sure it is one of the first considerations given to your trading system.
Choosing a Language.
Considerable detail has now been provided on the various factors that arise when developing a custom high-performance algorithmic trading system. The next stage is to discuss how programming languages are generally categorised.
Type Systems.
When choosing a language for a trading stack it is necessary to consider the type system . The languages which are of interest for algorithmic trading are either statically - or dynamically-typed . A statically-typed language performs checks of the types (e. g. integers, floats, custom classes etc) during the compilation process. Such languages include C++ and Java. A dynamically-typed language performs the majority of its type-checking at runtime. Such languages include Python, Perl and JavaScript.
For a highly numerical system such as an algorithmic trading engine, type-checking at compile time can be extremely beneficial, as it can eliminate many bugs that would otherwise lead to numerical errors. However, type-checking doesn't catch everything, and this is where exception handling comes in due to the necessity of having to handle unexpected operations. 'Dynamic' languages (i. e. those that are dynamically-typed) can often lead to run-time errors that would otherwise be caught with a compilation-time type-check. For this reason, the concept of TDD (see above) and unit testing arose which, when carried out correctly, often provides more safety than compile-time checking alone.
Another benefit of statically-typed languages is that the compiler is able to make many optimisations that are otherwise unavailable to the dynamically - typed language, simply because the type (and thus memory requirements) are known at compile-time. In fact, part of the inefficiency of many dynamically-typed languages stems from the fact that certain objects must be type-inspected at run-time and this carries a performance hit. Libraries for dynamic languages, such as NumPy/SciPy alleviate this issue due to enforcing a type within arrays.
Open Source or Proprietary?
One of the biggest choices available to an algorithmic trading developer is whether to use proprietary (commercial) or open source technologies. There are advantages and disadvantages to both approaches. It is necessary to consider how well a language is supported, the activity of the community surrounding a language, ease of installation and maintenance, quality of the documentation and any licensing/maintenance costs.
The Microsoft stack (including Visual C++, Visual C#) and MathWorks' MatLab are two of the larger proprietary choices for developing custom algorithmic trading software. Both tools have had significant "battle testing" in the financial space, with the former making up the predominant software stack for investment banking trading infrastructure and the latter being heavily used for quantitative trading research within investment funds.
Microsoft and MathWorks both provide extensive high quality documentation for their products. Further, the communities surrounding each tool are very large with active web forums for both. The software allows cohesive integration with multiple languages such as C++, C# and VB, as well as easy linkage to other Microsoft products such as the SQL Server database via LINQ. MatLab also has many plugins/libraries (some free, some commercial) for nearly any quantitative research domain.
There are also drawbacks. With either piece of software the costs are not insignificant for a lone trader (although Microsoft does provide entry-level version of Visual Studio for free). Microsoft tools "play well" with each other, but integrate less well with external code. Visual Studio must also be executed on Microsoft Windows, which is arguably far less performant than an equivalent Linux server which is optimally tuned.
MatLab also lacks a few key plugins such as a good wrapper around the Interactive Brokers API, one of the few brokers amenable to high-performance algorithmic trading. The main issue with proprietary products is the lack of availability of the source code. This means that if ultra performance is truly required, both of these tools will be far less attractive.
Open source tools have been industry grade for sometime. Much of the alternative asset space makes extensive use of open-source Linux, MySQL/PostgreSQL, Python, R, C++ and Java in high-performance production roles. However, they are far from restricted to this domain. Python and R, in particular, contain a wealth of extensive numerical libraries for performing nearly any type of data analysis imaginable, often at execution speeds comparable to compiled languages, with certain caveats.
The main benefit of using interpreted languages is the speed of development time. Python and R require far fewer lines of code (LOC) to achieve similar functionality, principally due to the extensive libraries. Further, they often allow interactive console based development, rapidly reducing the iterative development process.
Given that time as a developer is extremely valuable, and execution speed often less so (unless in the HFT space), it is worth giving extensive consideration to an open source technology stack. Python and R possess significant development communities and are extremely well supported, due to their popularity. Documentation is excellent and bugs (at least for core libraries) remain scarce.
Open source tools often suffer from a lack of a dedicated commercial support contract and run optimally on systems with less-forgiving user interfaces. A typical Linux server (such as Ubuntu) will often be fully command-line oriented. In addition, Python and R can be slow for certain execution tasks. There are mechanisms for integrating with C++ in order to improve execution speeds, but it requires some experience in multi-language programming.
While proprietary software is not immune from dependency/versioning issues it is far less common to have to deal with incorrect library versions in such environments. Open source operating systems such as Linux can be trickier to administer.
I will venture my personal opinion here and state that I build all of my trading tools with open source technologies. In particular I use: Ubuntu, MySQL, Python, C++ and R. The maturity, community size, ability to "dig deep" if problems occur and lower total cost ownership (TCO) far outweigh the simplicity of proprietary GUIs and easier installations. Having said that, Microsoft Visual Studio (especially for C++) is a fantastic Integrated Development Environment (IDE) which I would also highly recommend.
Batteries Included?
The header of this section refers to the "out of the box" capabilities of the language - what libraries does it contain and how good are they? This is where mature languages have an advantage over newer variants. C++, Java and Python all now possess extensive libraries for network programming, HTTP, operating system interaction, GUIs, regular expressions (regex), iteration and basic algorithms.
C++ is famed for its Standard Template Library (STL) which contains a wealth of high performance data structures and algorithms "for free". Python is known for being able to communicate with nearly any other type of system/protocol (especially the web), mostly through its own standard library. R has a wealth of statistical and econometric tools built in, while MatLab is extremely optimised for any numerical linear algebra code (which can be found in portfolio optimisation and derivatives pricing, for instance).
Outside of the standard libraries, C++ makes use of the Boost library, which fills in the "missing parts" of the standard library. In fact, many parts of Boost made it into the TR1 standard and subsequently are available in the C++11 spec, including native support for lambda expressions and concurrency.
Python has the high performance NumPy/SciPy/Pandas data analysis library combination, which has gained widespread acceptance for algorithmic trading research. Further, high-performance plugins exist for access to the main relational databases, such as MySQL++ (MySQL/C++), JDBC (Java/MatLab), MySQLdb (MySQL/Python) and psychopg2 (PostgreSQL/Python). Python can even communicate with R via the RPy plugin!
An often overlooked aspect of a trading system while in the initial research and design stage is the connectivity to a broker API. Most APIs natively support C++ and Java, but some also support C# and Python, either directly or with community-provided wrapper code to the C++ APIs. In particular, Interactive Brokers can be connected to via the IBPy plugin. If high-performance is required, brokerages will support the FIX protocol.
Conclusão.
As is now evident, the choice of programming language(s) for an algorithmic trading system is not straightforward and requires deep thought. The main considerations are performance, ease of development, resiliency and testing, separation of concerns, familiarity, maintenance, source code availability, licensing costs and maturity of libraries.
The benefit of a separated architecture is that it allows languages to be "plugged in" for different aspects of a trading stack, as and when requirements change. A trading system is an evolving tool and it is likely that any language choices will evolve along with it.
Apenas iniciando o comércio quantitativo?
3 razões para se inscrever para a lista de e-mails QuantStart:
1. Quant Trading Lessons.
Você terá acesso instantâneo a um curso de e-mail gratuito de 10 partes, repleto de sugestões e dicas para ajudá-lo a começar a negociação quantitativa!
2. Todo o conteúdo mais recente.
Todas as semanas, vou enviar-lhe um envoltório de todas as atividades no QuantStart para que você nunca mais perca uma postagem novamente.
Real, dicas de negociação viáveis, sem tonturas.
Learning to Program Trading Systems.
I have published a lot of content on this site over the past few years. Some of it is good. Some of it sucks. One thing that continues to surprise me is that two of the most popular posts from the past year cover a topic I know virtually nothing about.
Back in January 2013, I wrote a post on Building & Backtesting Trading Systems. Then, I followed that up with a post on Trading System Software in April. I made it clear in each of these posts that I have no experience or expertise in this area, but it seems to be where my trading might be headed. Learning to program trading systems is the next logical step in my evolution as a trader.
Apparently, there are quite a few DTAYS readers that feel the same way. There are lots of us that want to build and backtest our own strategies, but have no idea where to even start doing that. I propose that we start working toward figuring that out. In doing so, we will leave a trail that can be followed in the future by anyone who shares our interest and the passion to learn.
With that said, here is what I’ve come up with so far:
NinjaTrader.
After discarding all of the extremely expensive software packages that were covered in the Trading System Software post, the first package I actually worked with was NinjaTrader.
NinjaTrader had two major strengths on its side. First and foremost, it is free to learn on. You can download a fully functional demo that allows you to do everything the software is capable of except place live trades. Obviously, the price tag was a big selling point for me.
Another big advantage that NinjaTrader offered was that there were tutorials available to help you learn how to use the software. This meant that it might be possible to teach yourself the software.
The big drawback that I encountered with NinjaTrader was that no one that I talked to seemed to use it. I have interviewed dozens of quantitative traders, and none of them have even mentioned NinjaTrader as an option. This doesn’t necessarily mean it’s a poor software package, but it did raise some concerns with me.
TradeStation.
About the time the I started realizing that no one seemed to be using NinjaTrader, I interviewed Jeff from System Trader Success. In that interview, Jeff talked at great length about the TradeStation platform and everything that he was able to do with it.
After that interview, I couldn’t help but be curious, so I opened an account with TradeStation and started to experiment with their software. I really liked the platform, but was disappointed to find out that I could not run it on my MacBook. I also had issues installing the newest version on my Windows laptop.
One of the big advantages of TradeStation was that there were actual books published on how to program systems with their EasyLanguage code. Once again, this was a way that I could teach myself how to program quantitative trading strategies.
The big drawback with TradeStation was that after my first three months were up, they were going to start charging me $100 per month to use their platform, unless I made something like 50 trades per month. There were also additional fees that involved data feeds and being able to backtest portfolio strategies. The growing cost of my TradeStation education became concerning, so I closed the account.
thinkorswim.
Despite my confusion over their lack of use of capital letters, my next platform experience was with thinkorswim from TD Ameritrade. The big selling point here was that I didn’t have to deposit any money to gain access to their software. Another huge plus is that they have a version for Mac. The platform also comes with “think money,” which gives you paper money accounts to test strategies with.
As far as a platform, thinkorswim is able to do pretty much everything I was doing with TradeStation. Of course, I wasn’t really doing much. I was able to edit some “studies” in order to help with the scans for the Quantitative Growth Fund, but I am still entering all of the trades manually and not doing any programming.
While I don’t have anything bad to say about thinkorswim, my interview with Cesar Alvarez from Alvarez Quant Trading was a bit of an eye opener. In that interview, Cesar echoed the glowing endorsement that Nick Radge had given for Amibroker in an earlier interview.
The lightbulb moment for me was realizing that this was the second professional trader who was telling me that Amibroker was the best software package for them. If this is the software that professionals feel comfortable with, why isn’t this the software that I am learning? Why am I dragging my feet on getting it set up?
Then, there are the two huge selling points about Amibroker. First, the price. The standard version currently goes for a one-time fee of $219. Second, there are multiple books that Cesar recommended as tutorials for learning the software.
Avançar.
With all of that in mind, I purchased the standard license version of Amibroker. I also ordered Quantitative Trading Systems by Howard Bandy and downloaded his free Amibroker guide. If this is the route that the pros would go, this is the route I should go. Especially considering the price is not outrageous.
This is the starting point for anyone that wants to learn about programming quantitative trading strategies, but has no idea how to get started. This is the beginning of our journey into the programming side of quant trading, and anyone who is interested is welcome to come along for the ride.
For the cost of $219, I have a standard version of Amibroker purchased. Then, for the cost of $50, I have two books from Howard Bandy. That means that for less than $300 I have put together what should be an excellent beginners education for learning to program trading systems.
Compartilhar isso:
O boletim informativo DTAYS.
Inscreva-se para receber diários semanais DTAYS enviados diretamente para sua caixa de entrada!
Learn to program trading systems
Criando um Sistema de Negociação no Laboratório de Sistemas de Negociação.
O Trading System Lab gerará automaticamente Sistemas de Negociação em qualquer mercado em poucos minutos, usando um programa de computador muito conhecido, conhecido como AIMGP (Indução Automática de Código de Máquina com Programação Genética). A criação de um sistema de negociação no Trade System Lab é realizada em 3 etapas fáceis. Primeiro, é executado um pré-processador simples que extrai e pré-processa automaticamente os dados necessários do mercado com o qual você deseja trabalhar. A TSL aceita dados CSI, MetaStock, AIQ, TradeStation, dados de Internet gratuitos, ASCII, TXT, CSV, CompuTrac, DowJones, FutureSource, TeleChart2000v3, TechTools, XML, Binário e Internet. Em segundo lugar, o gerador do sistema de negociação (GP) é executado por vários minutos, ou mais, para evoluir um novo sistema de negociação. Você pode usar seus próprios dados, padrões, indicadores, relações de inter-mercado ou dados fundamentais dentro do TSL. Terceiro, o Sistema de Negociação evoluído é formatado para produzir novos sinais do Sistema de Negociação dentro da TradeStation ™ ou muitas outras plataformas de negociação. O TSL escreverá automaticamente Easy Language, Java, Assembler, código C, código C # e WealthLab Script Language. O Trading System pode então ser negociado manualmente, negociado através de um corretor ou negociado automaticamente. Você pode criar o Trading System você mesmo ou podemos fazer isso por você. Então, você ou o seu corretor podem trocar o sistema manualmente ou automaticamente.
O Programa de Genética do Sistema de Negociação do Comércio contém vários recursos que reduzem a possibilidade de montagem da curva ou produzem um Sistema de Negociação que não continua a atuar no futuro. Em primeiro lugar, os Sistemas de Negociação evoluídos têm seu tamanho reduzido ao tamanho mais baixo possível através do que é chamado de Pressão Parsimonia, extraindo do conceito de comprimento mínimo da descrição. Assim, o sistema de negociação resultante é o mais simples possível e, em geral, acredita-se que, quanto mais simples for o Sistema de Negociação, melhor será no futuro. Em segundo lugar, a aleatoriedade é introduzida no processo evolutivo, o que reduz a possibilidade de encontrar soluções que sejam localmente, mas não globalmente otimizadas. A aleatoriedade é introduzida sobre não apenas as combinações do material genético utilizado nos Sistemas de Negociação evoluídos, mas em Parsimony Pressure, Mutation, Crossover e outros parâmetros de GP de nível superior. O teste de fora da amostra é realizado enquanto o treinamento está em andamento com informações estatísticas apresentadas nos testes de Teste de Amostra e Fora do Teste de Amostra. Os registros de execução são apresentados ao usuário para dados de treinamento, validação e fora de amostra. Bem comportado O desempenho fora da amostra pode ser indicativo de que o Sistema de Negociação está evoluindo com características robustas. A deterioração substancial no teste automático de Out of Sample em comparação com o teste In Sample pode implicar que a criação de um Sistema de Negociação robusto está em dúvida ou que o Terminal ou Conjunto de Entrada pode precisar ser alterado. Finalmente, o Conjunto de terminais é cuidadosamente escolhido, de modo a não prejudicar demais a seleção do material genético inicial em relação a qualquer viés ou sentimento de mercado específico.
O TSL não começa a ser executado com um Sistema de Negociação predefinido. Na verdade, apenas o conjunto de entradas e uma seleção de modos ou modos de entrada no mercado, para busca e atribuição automática de entrada, são feitos inicialmente. Um padrão ou comportamento indicador que pode ser pensado como uma situação de alta pode ser usado, descartado ou invertido dentro do GP. Nenhum padrão ou indicador é pré-atribuído a qualquer viés de movimento de mercado específico. Esta é uma saída radical do desenvolvimento do sistema de negociação gerado manualmente.
Um Sistema de Negociação é um conjunto lógico de instruções que dizem ao comerciante quando comprar ou vender um mercado específico. Essas instruções raramente exigem intervenção de um comerciante. Os Sistemas de Negociação podem ser negociados manualmente, observando as instruções de negociação em uma tela do computador, ou podem ser negociados, permitindo que o computador entre em negociações no mercado automaticamente. Ambos os métodos estão em uso generalizado hoje. Existem mais gerentes de dinheiro profissionais que se consideram comerciantes "sistemáticos ou mecânicos" do que aqueles que se consideram "discretos", e o desempenho dos gerentes de dinheiro sistemáticos é geralmente superior ao dos gestores de dinheiro discrecional. Estudos mostraram que as contas de negociação geralmente perdem dinheiro com mais freqüência se o cliente não estiver usando um Sistema de Negociação. O aumento significativo nos sistemas de negociação nos últimos 10 anos é evidente, especialmente nas corretora de commodities, no entanto, as empresas de corretagem de mercado de ações e títulos estão cada vez mais conscientes dos benefícios através do uso de sistemas de negociação e alguns começaram a oferecer sistemas de negociação para seus clientes de varejo.
A maioria dos gestores de fundos mútuos já estão usando algoritmos computacionais sofisticados para orientar suas decisões quanto ao "estoque quente a escolher" ou o que "rotação do setor" é favorável. Computadores e algoritmos tornaram-se mainstream no investimento e esperamos que essa tendência continue a ser mais jovem, os investidores mais experientes em informática continuam a permitir que partes do seu dinheiro sejam gerenciadas pelos sistemas de negociação para reduzir o risco e aumentar os retornos. As enormes perdas experimentadas pelos investidores que participam da compra e detenção de ações e fundos de investimento como o mercado de ações derretido nos últimos anos está promovendo esse movimento para uma abordagem mais disciplinada e lógica para investir no mercado de ações. O investidor médio percebe que ele ou ela atualmente permite que muitos aspectos de suas vidas e a vida de seus entes queridos sejam mantidos ou controlados por computadores, como os automóveis e as aeronaves que usamos para o transporte, o equipamento de diagnóstico médico que usamos para a manutenção da saúde, os controladores de aquecimento e refrigeração que usamos para controle de temperatura, as redes que usamos para informações baseadas na internet, até mesmo os jogos que jogamos para entretenimento. Por que, então, alguns investidores de varejo acreditam que podem "disparar do quadril" em suas decisões sobre "o que" estoque ou fundo mútuo para comprar ou vender e esperar ganhar dinheiro? Finalmente, o investidor médio ficou cauteloso com os conselhos e informações encaminhados por corretores, contadores, diretores corporativos e consultores financeiros sem escrúpulos.
Nos últimos 20 anos, matemáticos e desenvolvedores de software pesquisaram indicadores e padrões em mercados de ações e commodities buscando informações que possam apontar para a direção do mercado. Essas informações podem ser usadas para melhorar o desempenho dos Sistemas de Negociação. Geralmente, este processo de descoberta é realizado através de uma combinação de testes e erros e mais sofisticados "Mineração de Dados". Normalmente, o desenvolvedor levará semanas ou meses de crunching de números para produzir um potencial Sistema de Negociação. Muitas vezes, este sistema de negociação não funcionará bem quando usado no futuro devido ao que é chamado de "ajuste de curva". Ao longo dos anos, tem havido muitos sistemas de negociação (e empresas de desenvolvimento de sistemas de negociação) que vieram e foram, já que seus sistemas falharam na negociação ao vivo. O desenvolvimento de sistemas de negociação que continuam a atuar no futuro é difícil, mas não é impossível de realizar, embora nenhum desenvolvedor ético ou gerente de dinheiro dê uma garantia incondicional de que qualquer Sistema de Negociação ou, por isso, qualquer ação, vínculo ou fundo mútuo, continuará para produzir lucros no futuro para sempre.
O que demorou semanas ou meses para que o desenvolvedor do Trading System produza no passado pode agora ser produzido em minutos através do uso do Trading System Lab. O Trading System Lab é uma plataforma para a geração automática de sistemas de negociação e indicadores de negociação. A TSL faz uso de um mecanismo de programação genética de alta velocidade e produzirá sistemas de negociação a uma taxa de mais de 16 milhões de barras de sistema por segundo com base em 56 entradas. Note-se que apenas alguns insumos serão realmente usados ou necessários, resultando em estruturas de estratégia geralmente simples evoluídas. Com aproximadamente 40.000 a 200.000 sistemas necessários para uma convergência, o tempo de convergência para qualquer conjunto de dados pode ser aproximado. Note-se que não estamos simplesmente executando uma otimização de força bruta de indicadores existentes que procuram parâmetros ótimos a partir dos quais usar em um Sistema de Negociação já estruturado. O Gerador do Sistema de Negociação começa em uma origem de ponto zero, não fazendo suposições sobre o movimento do mercado no futuro e então "evolui" Sistemas de Negociação a uma taxa muito alta combinando informações presentes no mercado e formulando novos filtros, funções, condições e relacionamentos à medida que progride para um sistema de negociação "geneticamente modificado". O resultado é que um excelente sistema de negociação pode ser gerado em poucos minutos em 20-30 anos de dados de mercado diários em praticamente qualquer mercado.
Ao longo dos últimos anos, houve várias abordagens para a otimização do Sistema de Negociação que empregam o Algoritmo Genético menos poderoso. Os Programas Genéticos (GP's) são superiores aos Algoritmos Genéticos (GA's) por vários motivos. Primeiro, os GPs convergem em uma solução a uma taxa exponencial (muito rápido e ficando mais rápido), enquanto os Algoritmos Genéticos convergem em uma taxa linear (muito mais lenta e não está ficando mais rápida). Em segundo lugar, os GPs realmente geram o código da máquina do Sistema de Negociação que combinava o material genético (indicadores, padrões, dados inter-mercado) de maneiras únicas. Essas combinações únicas podem não ser intuitivamente óbvias e não requerem definições iniciais pelo desenvolvedor do sistema. As relações matemáticas únicas criadas podem se tornar novos indicadores ou variantes na Análise Técnica, ainda não desenvolvidas ou descobertas. GA, por outro lado, simplesmente procure soluções ótimas à medida que progridem no intervalo de parâmetros; eles não descobrem novas relações matemáticas e não escrevem seu próprio código de Sistema de Negociação. O código do sistema comercial do GP de vários comprimentos, usando genomas de comprimento variável, modificará o comprimento do Sistema de Negociação através do chamado cruzamento não homólogo e descartará completamente um indicador ou padrão que não contribua para a eficiência do Sistema de Negociação. O uso de GA apenas blocos de instruções de tamanho fixo, fazendo uso de apenas cruzamentos homólogos e não produzem código de código de troca de comprimento variável, nem descartarão um indicador ou padrão ineficiente tão prontamente como um GP. Finalmente, os Programas Genéticos são um avanço recente no domínio da aprendizagem por máquinas, enquanto os Algoritmos Genéticos foram descobertos há 30 anos. Os Programas Genéticos incluem todas as principais funcionalidades dos Algoritmos Genéticos; crossover, reprodução, mutação e fitness, no entanto GPs incluem características muito mais rápidas e robustas, tornando a GP a melhor opção para produzir Trading Systems. O GP empregado no Trading System Generator da TSL é o GP mais rápido atualmente disponível e não está disponível em nenhum outro software de mercado financeiro no mundo.
O Algoritmo de Programação Genética, o Simulador de Negociação e os Motores Fitness utilizados na TSL levaram 8 anos para produzir.
O Trading System Lab é o resultado de anos de trabalho árduo de uma equipe de engenheiros, cientistas, programadores e comerciantes, e acreditamos que representa a tecnologia mais avançada disponível hoje para comercializar os mercados.
Comments
Post a Comment